A mouse model for visualization and conditional mutations in the erythroid lineage.
نویسندگان
چکیده
Hematologic disorders can be caused by sporadic or inherited mutations. However, the molecular mechanisms that lead to pathogenicity are only partially understood. An accurate method to generate mouse models is conditional gene manipulation facilitated by the Cre-loxP recombination system. To enable identification and genomic manipulation of erythroid progenitor cells, we established a knock-in mouse model (ErGFPcre) that expresses an improved GFPcre fusion protein controlled by the endogenous erythropoietin receptor (EpoR) promoter. We show that ErGFPcre mice enable the identification of GFP-positive erythroid progenitor cells and the highly specific genomic manipulation of the erythroid lineage. Analysis of GFP-positive erythroid progenitor cells suggests a developmental switch in lineage progression from the hematopoietic stem cell compartment to early erythroid progenitor cells that are stem cell antigen-1-negative (Sca-1(-)) and c-kit(high). Within the hematopoietic system, Cre-mediated recombination is limited to erythroid progenitor cells and occurs in the adult bone marrow at a frequency of up to 80% and in the fetal liver with an efficiency close to 100%. Differential transcriptional activity of the wild-type and the knock-in locus was observed in nonhematopoietic tissues. Thus, our ErGFPcre mouse model could promote the identification of regulatory elements controlling nonhematopoietic EpoR expression and facilitates the characterization and genomic manipulation of erythroid progenitor cells.
منابع مشابه
Differentiation of Mouse Yolk Sac Cells to Erythroid Cells in The Presence of Erythropoietin
Purpose: Yolk sac hematopoietic stem cells (YS-HSC) have two dominant characteristices: a larger reproductive capacity and the absence of the expression of MHC associated antigens. Therefore, these cells are promising candidates for transplantation, cell therapy and gene manipulation. There are controversial reports on the effects of erythropoietin (EPO) on the differentiation of yolk sac cells...
متن کاملمقایسه داروهای تالیدوماید و بوتیرات سدیم در تکثیر و تمایز پیش سازهای ریتروئیدی حامل جهش β-تالاسمی در محیط آزمایشگاهی
Background and Aim: Understanding the molecular mechanisms involved in the increased levels of HbF inducing drugs should be advised for effective induction. The aim of this study was to investigate the molecular effects of the drugs thalidomide and sodium butyrate considered as HbF inducer agents. Materials and Methods: In this experimental study, CD133+ cord blood stem cells carrying mutatio...
متن کاملGene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells
Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...
متن کاملRange Determination of Antigen Expression in Myeloid, Erythroid and Lymphoid Cell Lineages among Patients with Myelodysplastic Syndrome
Background: Myelodysplastic syndrome is a mixed clonal disorder of bone marrow progenitor cells. Understanding the pattern of the different lineage-specific, immature, and mature markers in myelodysplastic syndrome will help in setting-up the frame of reference to diagnose. Patients and Methods: We compared 60 bone marrow samples from 30 newly-diagnosed patients with myelodysplastic syndrome ...
متن کاملPromoter Methylation and Gene Expression in Human CD34+ Stem Cells Derived Erythroid Lineage by MicroRNA
Background: Stem Cell differentiation is a process composed of vast variety of factors which are controlled by a network of certain mechanisms. This study aims to determine the possible role of DNA methylation, a potent regulator of VHL, ECAD and RUNX3 genes during Erythroid differentiation driven by miR-451. Materials and Methods: To determine the methylation status of promoters and the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 104 3 شماره
صفحات -
تاریخ انتشار 2004